Jump to content
Rommel

Piattaforma FLIP

Recommended Posts

Piattaforma FLIP

 

Se fosse una tipica nave, inizierei l'articolo parlando della sua storia, scriverei della tenuta a mare in navigazione, di una costruzione in acciaio di 108 m e di una stiva paurosamente spaziosa. Se fosse una nave qualsiasi. La piattaforma FLIP è ben altro.

zFftDze.jpg

La FLIP (FLoat Instrument Platform) fu creata nel giugno 1962 dalla Gunderson Brothers Engineering per conto della US Navy nella divisione ONR (Office of Naval Research), dispiegata dal Marine Physical Laboratory Oceanografy e dalla sezione oceanografica dell'università della California (normalmente è alla fonda nel porto di San Diego).

Il suo motivo esistenziale fu lo studio della propagazione a lungo raggio delle onde sonore a profondità diverse, studi che portarono al perfezionamento della guerra sottomarina. Le potenzialità di un laboratorio stazionario galleggiante la rese perfetta anche a compiti di ricerche oceanografiche, nello specifico le onde, la densità ai vari strati marini, i segnali acustici, la temperatura dell'acqua, dati meteorologici. Fu tra i primi laboratori a sperimentare l'uso del laser in ambiente marino.

Nel 1995 la FLIP ricevette un finanziamento di 2 milioni di dollari per l'ammodernamento, concluso nel 1996. Restò alata dal 2001 al 2003, 2006 e 2010, compiendo nel 2012 il 50° anniversario della sua attività.

Strutturalmente, altro non è che un pontone galleggiante in acciaio trainato da rimorchiatori, lungo 108 m e pesante 711 t. La parte frontale è più simile a quella di una comune nave di medio tonnellaggio, per consentire minor resistenza al traino e una tenuta al mare formato. Essa costituisce di fatto la parte più larga del FLIP con 7,93 m, con un pescaggio massimo di circa 3,5m. La sezione centrale cambia totalmente aspetto, arrivando ad avere un aspetto inizialmente cilindrico con diametro di 3,8 m e leggermente divergente verso poppa fino a 6 m, con uno specchio di poppa (se questo può essere il termine giusto data la costruzione) completamente piatto.

Essendo destinata alla ricerca con attrezzature estremamente sensibili, fu scelto di non motorizzarla al fine di non disturbare i rilevamenti dei sensori, ridurne quanto possibile il peso e la manutenzione, ridurre i serbatoi di carburante e la difficoltà meccanica strutturale di mantenere un motore solidale allo scafo in verticale (cosa che spiegherò in seguito). La massima velocità sostenibile è di 7-10 nodi.

l1CA1KC.jpg

Per natura stessa di qualsiasi battello non auto-propulso, sarebbe estremamente instabile e la sua funzione di ricerca risulterebbe un'utopia in mezzo all'oceano, specialmente se al suddetto pontone venisse chiesto di compiere misurazioni in merito alle onde. Ma allora in che modo questo singolare pontone vagamente simile ad una nave in prora dovrebbe adempiere a tali compiti? E che centrano le considerazioni sul posizionamento di un motore in verticale?

La risposta è tanto semplice quanto sbalorditiva: tale pontone si tramuta in boa oceanica.

s75Umz8.jpg

E qui si passa al pezzo forte, ossia la sua struttura interna. Partendo da poppa nella sezione cilindrica, sono presenti otto sezioni normalmente galleggianti. Esse, attraverso una cintura di valvole ad apertura controllata, vengono allagati per consentire l'appoppamento e successivamente l'affondamento di tutta la sezione poppiera. Tra le sezioni allagabili e la prora sono presenti sei sezioni stagne destinate al puro galleggiamento. Esse contengono inoltre cilindri di aria compressa a 250 psi destinati al ritornare in posizione orizzontale.

9Sku0GD.jpg

Una volta individuato il punto di fonda, si procede al sequenziale riempimento delle sezioni allagabili finché la poppa comincia ad inabissarsi. A 22,5° la velocità di affondamento è di 20 minuti, nei quali si ha il totale allagamento delle sezioni. A 45° la velocità aumenta a 6 minuti. Al raggiungimento di circa 60-70° sulla verticale, si ha l'avanzamento della sezione anteriore in virtù di un baricentro estremamente basso rispetto alla condizione iniziale. L'auto-affondamento termina al raggiungimento del 90° sulla verticale in circa 40 secondi, mentre la spinta idrostatica di galleggiamento permette il mantenimento stabile della parte immersa per 91,4 m.

Laddove correnti e vento risultano notevoli, dispone di un ancoraggio di bordo tramite tre ancore filabili da prora fino al fondale, ammanigliate a spezzoni terminali di catena e cime in nylon, riavvolte per mezzo di argani. I compartimenti intermedi n°6 e 7 consentono l'aggiustamento di posizione calibrando la quantità di acqua necessaria al livello ottimale di stabilità.

Per il ritorno in superficie, l'aria compressa nei cilindri di galleggiamento fa progressivamente uscire l'acqua di mare dagli sfiatatoi, tornando alla posizione iniziale.

Il disegno di una simile struttura permette infatti di sfruttare l'effetto delle onde oceaniche: la forza in cresta d'onda viene sempre controbilanciata dalla diversa densità dell'acqua di profondità e dalla forza ancorante della spinta negativa della colonna d'acqua sovrastante (è per questo la sezione cilindrica tende ad aumentare verso “poppa”). Accertato il pressoché nullo movimento di rollio e beccheggio anche con il mare mosso, l'unica forza alla quale la FLIP è soggetta è quella verticale, che in una altezza d'onda stimata di 9 m è di soli 0,9 m.

Se in modalità pontone non dispone di propulsione autonoma, in assetto boa un thruster elettrico posizionato a circa metà della sezione galleggiante permette la rotazione lungo l'asse verticale, in modo che la chiglia del modulo di prora funga da deflettore e tenga il modulo stesso sottovento.

Il modulo di prua presenta quattro paratie che, in posizione verticale, ne costituisce i ponti calpestabili, accessibili direttamente dal mare tramite una scaletta ingabbiala solidale al corpo cilindrico. Nel primo ponte, quello più vicino all'acqua in posizione riparata all'interno della chiglia, vi sono tre generatori diesel da 340 Kw più uno di backup da 40 Kw, necessari al funzionamento degli apparati vitali dell'equipaggio, della sensoristica, illuminazione e del thruster. Per la ricarica dei serbatoi d'aria, sono presenti due compressori Ingersoll-Rand H25M e desalinizzatori osmotici per la produzione di acqua potabile con un serbatoio da 5678 l.

Nel secondo ponte vi sono gli alloggi del personale, progettati per ospitare undici ricercatori per 30 giorni in completa autonomia. Sono istallate due docce e due bagni, di cui uno solidale ai ponti in navigazione orizzontale e uno alle paratie/ponti durante lo stazionamento verticale (di fatto in stazionamento, le pareti diventano piani calpestabili e i pavimenti diventano pareti con porte sia sul pavimento che sulle pareti). Durante la fase di “verticalizzazione”, il personale è tenuto ad indossare i giubbotti di salvataggio e ancorarsi alle paratie, mentre il mobilio, le brande e la strumentazione sono vincolati tramite giunti rotanti, i quali mantengono la normale posizione anche mentre la FLIP procede con la rotazione.

Al terzo livello sono presenti i laboratori e la sezione ricerca, mentre all'apice vi è il centro di comando di tutta la struttura e l'alloggio per cinque operatori. L'intera sezione emersa fuoriesce dall'acqua per 17 m circa. Nel retro (o sottostante il primo ponte in assetto verticale) è presente una lancia fuoribordo di salvataggio e collegamento calabile tramite verricelli.

La suite nautica è composta da un giroscopio, GPS, radar, radio HF e VHF, INMARSAT e telefoni satellitari. La componente elettronica di ricerca è disposta su bracci estensibili all'esterno del modulo abitativo. In cima è presente l'asta per gli indicatori meteorologici. A sinistra è presente un radiometro a microonde NRL/UMass con quattro sensori di flusso WHCI. Sulle due braccia vi sono uno scatterometro (strumento utilizzato per misurare il ritorno di luce o onde radar disseminate per diffusione per mezzo di acqua, aria, ecc) Nadir e un altimetro, una fotocamera IR e un laser di puntamento. Frontalmente è calata una catena di termistori per il rilevamento delle temperature a profondità crescenti e un sonar doppler per l'analisi delle “bolle acustiche” della IOS.

Z7aAmD3.jpg

 

 

 

https://www.youtube.com/watch?v=jpl09utzvvk

https://it.wikipedia.org/wiki/RP_FLIP

https://www.ship-technology.com/projects/flip-ship/

https://gcaptain.com/the-flip-scripps-institute-of-oceanography/

 

 

Share this post


Link to post
Share on other sites

Semplicemente impressionante !  E geniale.

Share this post


Link to post
Share on other sites

Quello che mi sorprende è l'abbandono del concetto di piattaforma sulla base di quelle petrolifere. Se non altro, rispetto a quelle, è dannatamente più economica, facile da piazzare e semplice.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

×